Sample-Efficient Geometry Reconstruction from Euclidean Distances using Non-Convex Optimization

Abstract

The problem of finding suitable point embedding or geometric configurations given only Euclidean distance information of point pairs arises both as a core task and as a sub-problem in a variety of machine learning applications. In this paper, we aim to solve this problem given a minimal number of distance samples. To this end, we leverage continuous and non-convex rank minimization formulations of the problem and establish a local convergence guarantee for a variant of iteratively reweighted least squares (IRLS), which applies if a minimal random set of observed distances is provided. As a technical tool, we establish a restricted isometry property (RIP) restricted to a tangent space of the manifold of symmetric rank-$r$ matrices given random Euclidean distance measurements, which might be of independent interest for the analysis of other non-convex approaches. Furthermore, we assess data efficiency, scalability and generalizability of different reconstruction algorithms through numerical experiments with simulated data as well as real-world data, demonstrating the proposed algorithm’s ability to identify the underlying geometry from fewer distance samples compared to the state-of-the-art.

Publication
In Advances in Neural Information Processing Systems 37 (NeurIPS 2024)
Ipsita Ghosh
Ipsita Ghosh
Ph.D. Student
Department of Computer Science
Institute for Artificial Intelligence

My research centers on creating scalable and dependable algorithms and models in machine learning and data science. I’m passionate about problems lying at the intersection of mathematics and computer science such as tackling computational and statistical challenges posed by complex models.

Christian Kümmerle
Christian Kümmerle
Assistant Professor
School of Data, Mathematical, and Statistical Sciences
Department of Computer Science
Institute for Artificial Intelligence

I am passionate about the potential of AI and operations research for Lightning network operations and about efficiency gains within AI models that can be unlocked by combining smoothing, parsimony, structured optimization.